R Programming
  • The wikipedia of R by me
  • Hello R
    • -What is R & RStudio
    • -Learning sources
    • -R online editor
    • -R environment
  • Data types
    • -Dealing with Number
    • -Dealing with String
    • -Dealing with Dates
    • -Dealing with NA's
    • -Dealing with Logicals
    • -Dealing with Factors
  • R data
    • -R object
    • -Data structures
      • --Basics
      • --Managing Vectors
      • --Managing Matrices
      • --Managing Data Frames
    • -Functions
    • -Importing/exporting data
    • -Shape&Transform data
    • -R management
  • Visualizations
  • Intro to R Bootcamp
    • -01-introduction
    • -02-data preparation
    • -03-data transformation
    • -04-visualization
  • R programming track
    • -a-Introduction to R
      • --1-Intro to basics
      • --2-Vectors
      • --3-Matrices
      • --4-Factors
      • --5-Data frames
      • --6-Lists
    • -b-Intermediate R
      • --1-Conditionals and Control Flow
      • --2-Loops
      • --3-Functions
      • --4-The apply family
      • --5-Utilities
    • -d-Writing Functions in R
      • --1-A quick refresher
      • --2-When and how you should write a function
      • --3-Functional programming
      • --4-Advanced inputs and outputs
      • --5-Robust functions
  • Data Wrangling with R
  • R-tutor
    • #R introduction
    • #Elementary Statistics with R
  • Hands-On Programming with R
  • R for Data Science
  • Advanced R
  • ggplot2
  • R packages
  • Statistik-1
  • Statistik-2
  • Statistik-3
  • Zeitreihen & Prognosen
  • Descriptive Analytics
  • Predictive Analytics
  • Prescriptive Analytics
  • R Graphics Cookbook
    • ggplot2 intro
    • ggplot2 custome
    • ggplot top-50
  • #Exploratory Data Analysis
    • -Data Summary
    • -Checklist Solution
  • #Data Mining
    • Untitled
    • Untitled
  • #Machine Learning
    • Intro to ML
    • Intro alghorithms
    • 1. Supervised Learning
  • Master R for Data Science
    • Learning R
    • Untitled
    • Untitled
  • Data Science Projects
    • Simple linear regression:
Powered by GitBook
On this page
  1. #Machine Learning

Intro alghorithms

Giving the computer system to "learn" using statistical techniques

PreviousIntro to MLNext1. Supervised Learning

Last updated 6 years ago

​​

​​

Deep Learning:

Deep Belief Network (DBN)

Deep Boltzmann Machine (DBM)

Stacked Auto Encoder

Convolutional Neural Network (CNN)

_____

Decision Tree:

Classification & Regression Tree (CART)

M5

C4.5

C5.0

Decision Stump

Conditional Decision Trees

Iterative Dichotomiser 3 (ID3)

Chi-squared Automation interaction Detection (CHAID)

_____

Bayesian

Gaussian Naive Bayes

Bayesian Network (BN)

Bayesian Belief Network (BBN)

Naive Bayes

Multinomial Naive Bayes

Average One Dependence Estimators (AODE)

_____

Clustering:

K-Means

K-Medians

Expectation Maximization

Hierarchical Clustering

_____

Regression

Linear Regression

Logistic Regression

Stepwise regression

Ordinary Least Square Regression (OLSR)

Multivariate Adaptive Regression Splines (MARS)

Locally Estimated Scatterplot Smoothing (LOESS)

_____

Neural Networks

Perceptron

Hopfield Network

Back-Propagation

_____

Dimensionality Reduction

Multidimensional Scalling (MDS)

Linear Discriminant Analysis (LDA)

Flexible Discriminant Analysis (FDA)

Principal Component Regression (PCR)

Mixture Discriminant Analysis (MDA)

Regularized Disriminant Analysis (RDA)

Quadratic Discriminant Analysis (QDA)

Partial Least Squares Discriminant Analysis

Projection Pursuit

Sammon Mapping

Partial Least Squares Regression (PLSR)

Principal Component Analysis (PCA)

_____

Instance Based

K-Nearest Neighbour (kNN)

Learning Vector Quantization (LVQ)

Self Organizing Map (SOM)

Locally Weighted Learning (LWL)

_____

Regularization

Ridge Regression

Least Absolute Shrinkage and Selection Operator (LASSO)

Elastic Net

Least Angle Regression (LARS)

_____

Rule System

Cubist

One Rule (OneR)

Zero Rule (ZeroR)

Repeated Incremental Pruning to Produce Error Reduction (RIPPER)

_____

Ensemble

Random Forest

Gradient Boosting Machines (GBM)

Boosting

Bootstrapped Aggregation (Bagging)

AdaBoost

Stacked Generalization (Blending)

Gradient Boosted Regression Trees (GBRT)

Radial Basis Function Network (RBFN)

Change pathDelete this page

A Tour of ML Alghorithms
Machine Learning Mindmap
Machine Learning Alghorithms